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What is lake
browning?

The process of
Increasing dissolved
organic matter (DOM)
In lakes and other
waterbodies,
Including throughout
upstate New York.




OK, but what is dissolved organic matter?



Dissolved organic matter is a heterogeneous pool of carbon-
based molecules. DOM is often the largest pool of carbon in
inland water bodies. )LDH
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Dissolved Organic Matter (DOM)

Operationally-defined as the material from living (or previously
living) things which passes through a filter
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Adapted from Azam and Malfatti (2007) Nat. Rev. Microbiol.



SO many acronyms...

* DOM = dissolved organic matter

DOM

DOM is often the largest pool of
organic matter in inland waters.

Inland waters play a key role in
global carbon cycling because
of DOM.




SO many acronyms...

* DOM = dissolved organic matter
* DOC = dissolved organic carbon

DOM

DOC is often how DOM is
measured.




SO many acronyms...

* DOM = dissolved organic matter
* DOC = dissolved organic carbon
* CDOM =chromophoric DOM

DOM

CDOM is what we see. It
absorbs light (and heat).
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SO many acronyms...

* DOM = dissolved organic matter

* DOC = dissolved organic carbon
* CDOM =chromophoric DOM
* FDOM = fluorescent DOM

FDOM is what in situ sensors
can measure.




DOM source affects its characteristics and how it
Interacts with other substances.

*Terrestrial plants

*Microbes (bacteria, algae)
* Man-made (organic pollutants)

Plant Microbial
DOM DOM



Why is lake browning occurring?
What is causing it and what are its effects?
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Precipitation pH, 1985 vs 2016
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Trends in the Adirondacks
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Water chemistry trends in Big Moose Lake, NY
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Lake browning is associated with
recovery from acid deposition.

A line through the observations shows a
statistically significant trend (p < 0.05).

Acid-neutralizing capacity (ANC) is a measure of
the buffering capacity against acidification of a
solution, e.g. surface water or soil water.

ANC is defined as the difference between cations
of strong bases and anions of strong acids (see
below), or dynamically as the amount of acid
needed to change the pH value from the sample's
value to a chosen different value.



Climate change may be amplifying lake browning

Temp trend
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Precipitation is increasing, especially extreme storms
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Storms can be a major source of DOM

Photos by Kevin Ryan and Jamie Shanley
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Lake browning reduces water clarity

Blue water, oligotrophic Green water, eutrophic Brown water, dystrophic
(low Chl, low DOM) (high Chl) (high DOM)



Adirondack Lake Survey

* 1984-1987

* Objectives included
classifying Adirondack lakes
based on sensitivity to acid
deposition
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* Sampled chemistry of nearly
1,500 lakes

* Provided important baseline
assessment of acidification
Impacts
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Remote sensing indicates widespread water clarity losses

Browning

Greening: 27% algal increase
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1980s %= ' TODAY

Bear Pond, Adirondacks

Courtesy Curt Stager, Paul Smith’s College



Browning reduces light availability underwater

DOC (mg L)



Browning alters the vertical distribution of light — and
by altering light it impacts many other attributes
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Browning alters lake temperature and thermal (density) stratification
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How does lake browning alter lake temperatures and
stratification?

Radiation




Changing water clarity can amplify or suppress climate-induced warming.
4
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Rose et al. 2016, L&O Letters



Changing water clarity can amplify or suppress climate-induced warming.
4
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Browning slightly
amplifies surface
temperatures

Browning suppresses
deep temperatures

Rose et al. 2016, L&O Letters



Changing water clarity can amplify or suppress climate-induced warming.
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Browning suppresses
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By amplifying surface temperatures while suppressing deep temperatures,
browning creates a greater temperature difference through the water
column (i.e., stronger stratification)

Rose et al. 2016, L&O Letters



Browning contributes to dissolved oxygen losses, reducing
oxy-thermal habitat available for cold water fishes

Surface Bottom Loss of trout habitat
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(a) Temperature difference (°C) (b) O, % saturation difference
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Higher DOM is associated with more respiration
(more oxygen consumption & more CO,, emissions)
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Dissolved organic matter can be a source of
nutrients and metals g
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Why is lake browning important?

* DOM is often largest source of organic carbon in aquatic ecosystems

Major regulator of water clarity; regulates UV and visible light

Regulates how heat is absorbed (temperature & stratification)

Influences oxygen availability and oxy-thermal habitat —impacts fisheries habitat &
food webs

* Can contribute to greater CO, and CH, emissions

* Can be a source of nutrients (e.g., N & P) and have bound Hg (influences speciation, fate, and
transport of metals)

Other aspects not discussed...

* Can produce toxic disinfection byproducts during drinking water treatment
* Can “sensitize” the photochemical breakdown of pollutants

* Canregulate pH

* Hydrophobic organic pollutants can partition into it

* Electron acceptor and donator; antioxidant and oxidant



SCALE:
A Survey of Climate and
Adirondack Lake Ecosystem




Climate change

* Warming temperatures
* [ce cover loss & longer stratification
* Dissolved oxygen loss

* Precipitation increases

* Cold-water species extirpation

Interacting stressors
* Browning

* Mercury loading Mg
* Land use/land cover change | . | _

* Invasive species Ao | :
« Harmful algal blooms e~
* Salinization




Today, Adirondack waterbodies are recovering from historical
acidification, but also challenged by climate change &

Interactions with other stressors
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A new series of threats necessitates a new survey — far beyond just chemistry



Seasonal lake ice is declining & the summer is lengthening

EPA Climate Change Indicators
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Lake ice is a defining feature of northern lakes. Loss impacts both ecology & human uses.



Algal blooms are widespread in NY and increasing
over time.
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National salinization
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The widespread and substantial changes in the
Adirondacks is a call to conduct a new lake survey

* Leverage the wealth of historical datasets to select waterbodies and
assess trends

* Leverage recent technological innovations, from high-frequency
sensors to eDNA

* Assess nearly all aspects of these ecosystems, from physics to fish



Planning workshop: July 2021

A consortium approach

(in no particular order)
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Four motivating themes

* How has the warming climate and increasing severe storms
affected baseline conditions of water temperature, oxygen, and
nutrients in Adirondack lakes?

* How is climate change affecting the biota of Adirondack lakes?

* How is climate change affecting carbon cycling, including the role
of lake browning in carbon cycling?

* Are harmful algal blooms (HABs) becoming more prevalent under
climate change?



Data mining of historical Adirondack lake sampling programs
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Clustering the 1980s Adiro
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A NESTED APPROACH FOR SURVEYING
OVER 300 ADIRONDACK LAKES AND PONDS

CLASS 1: HIGH INTENSITY

Ten lakes will undergo the greatest sampling efforts. These lakes will be monitored
continuously via high frequency sensors over the three-year study period. In
addition, they will receive up to six visits per season to perform the full suite of field
sampling and analysis.

CLASS 2: MODERATE INTENSITY

Maoderate Intensity: 30 additional lakes will receive the high intensity treatment, but
for a one-year duration. Groups of 10 lakes will rotate annually over the three-year
study period.

CLASS 3: LOW INTENSITY

Low Intensity: Up to 260 of these candidate lakes will be sampled on a one-time
basis over three years. These lakes will be sampled to establish baseline conditions.




Weather station

| - Sub-surface mounted sensors
i « 3DO/temp loggers
o * Temp every ~m
‘ * Pressure logger along shore

Trail camera

Sensors deployed ~24/7/365

Retrieved 2x/yr to download data,
calibrate sensors, replace batteries
Bottom mounted to ensure no
entanglementinice, minimize vandalism




Analyte list

Chemical & Biological attributes

Al (total, organic, inorganic)

Hg, MeHg

Ca, Cl, Fe, Mg, Na, Zn, Se

ANC, DIC

N & P species (TN, TP, TDN, NH4, SRP)
TSS, NVSS

Si02

SO4

Color, dissolved absorbance, DOC, EEMs
Chlorophyll a

Phytoplankton community
Zooplankton community

eDNA for mollusks, fish, AIS

Stable isotopes: C, N, H
Cyanobacteria toxins

Field measurements (water column profile)
* Light attenuation, Secchi disk

* Sonde profile

Temperature

pH/ORP

Conductivity,

Dissolved oxygen

Turbidity

fDOM

Chlorophyll

Phycoerythrin fluorescence

* Phytoplankton taxonomic groups (BBE fluoroprobe)

Green algae

Blue-green algae/cyanobacteria
Diatoms/dinoflagellates
Cryptophytes

* Greenhouse gases

CO,, CH,, N,O



SCALE timeline

e 2023-2024: SCALE Pilot effort (Complete)

* Data mining, modeling, and remote sensing work
* Methods development (eDNA, stable isotopes, C characterization)

e 2025-2027: Field operations
* Winter 2025-2026: Community meeting

* 2028 and beyond: Data analysis, visualization, assessments,
and reporting
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Thank you!



Role of dissolved organic carbon (DOC) in global cycles

on land inland waters open ocean

Dead terrestrial biomass

1200 Pg-C
Riverine DOC N Ocean DOC
0.25 Pg-C yr? 660 Pg-C

2200 Pg-C Riverine DOC export is predicted to increase
with continued climate change/human activity:

Soils

* changes in land use
*  “browning” of inland waters

— 1015 -
1Pg=10"¢ * enhanced severity/frequency of storm events

Hedges et al. (1997) Organic Geochenristry 3



Early research in the 1960s highlighted the potential of air pollution to
reduce the pH in precipitation.
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Fig. 1. Weighted annual concentrations of NO, and NH,* (A) and SO/ and the pH (B) of precipitation at the Hubbard Brook
Experimental Forest in New Hampshire. Values for 1955-1956 were estimated from Junge and Werby (35) and Junge (36).
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Gene Likens, Cary Institute for Ecosystem Studies discovered acid
rain (Likens and Bormann 1974, Science).



Chromophoric Dissolved Organic Matter (CDOM)

- Source of carbon and
nutrients

- Derived from both terrestrial
and aquatic sources

- Indicator of terrestrial
vegetation

- Changing; e.g., recovery from
acidification
- “Ozone of the underwater




What are the ecological effects of acidification?

pHGE.5 | pH 6.0 | pH5.5 | pH 5.0 | pH 4.5 | pH 4.0

TROUT
BASS
PERCH

FROGS

Decrease in pH e
* Weathering rates increased cLaws
* Degrades built and natural structures

* Decrease in primary production
* Terrestrial: dying forests, reduced GPP
* Aquatic: “Clean” clear water — because algae can’t grow & DOM not soluble!

* Increase in aluminum mobilization to aquatic ecosystems
* Al highly toxic to fish (it reduces gill function, leading to asphyxiation)

* Decrease solubility in dissolved organic matter (DOM)
* Increases water clarity, reduced CO, emissions

* Impedes nutrient cycles
e Calcium, Magnesium, Potassium
 Cacannot be pulled back seasonally, leading to Ca deficiency over time.
* Decline in economically important vegetation (e.g., Sugar Maples)

SMNAILS
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MAYFLY




CDOM often measured using absorbance scans.

Absorbance at any wavelength can be estimated given a slope
and absorbance at one wavelength
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Important DOM optical properties
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DOC specific absorbance is closely
related to spectral slope.
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DOC specific absorbance is closely
related to spectral slope.
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Can we estimate DOC if we can measure absorbance
and spectral slope In situ?
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Lake play an important role in the global carbon cycle.

Net C fluxes in Pg C/yr

Anthropogenic: red text
Pre-industrial: black text
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Blue panel and arrows (A) show fluxes between partitioned land and inland waters components.

Red panel and arrows (B) show alternate conception of the fluxes through a “continental” boundary, where land and aquatic fluxes are merged.

Drake et al. 2017



At peak SO, emissions, precipitation was
highly acidic.
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NY State monitoring ecological effects of acid deposition

Biological monitoring: 28 lakes, ~20 years Chemical, physical monitoring: 52 lakes, ~30 years

New York State
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How have primary and secondary productivity been changing?

Chlorophyll
concentration (ug L)

0

10

5

1995 2000 2005 2010

Chlorophyll trend: 0.6 pg chlorophyll decade-
)

No corresponding trend in phytoplankton
biovolume.

n

Zooplankton
abundance (org. L)

1995 2000 2005 2010

Zooplankton trend: -25 organisms decade™

~60% reduction, 1994-2012.

Trends driven largely by declines in calanoid
copepod biomass

Leptodiaptomus minutus ~48% of the crustacean
zooplankton biomass

Leach etal. 2019



What’s driving zooplankton losses? Many characteristics
are changing...

Z score

21 ANC — NO; — pH — SO%

1995 2000 2005 2010

increasing 9.65 peq. L' decade™
pH: Increasing 0.19 pH decade™
Nitrate is decreasing -0.23 mg L' decade’
Sulfate is decreasing -1.09 mg L' decade™

1995 2000 2005 2010

decreasing -8.9 ug L' decade™
Ca: decreasing -0.14 mg L' decade™
Many lakes crossing below 1-1.5 mg L’
Ca, a critical threshold for crustacean
zooplankton.

Leach et al. 2019



Acidification Recovery from acidification & associated browning
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Important physical & chemical changes
J- Ca?* J- Water clarity

Ecological consequences

» ‘I mixed layer chlorophyll but no
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Hydrodynamic modelling enables characterization of the effects
of changing water clarity on lake temperatures at broad scales.

* Dynamic lake temperature
simulations

 Tested on 1,894 lakes

* 1979-2012 (34 years)

* |Incorporated historical climate data
 Altered water clarity at 0.92% yr

e Successfully validated, RMSE 1.76 °C
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Depth (m)
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Rose et al. 2016, L&O Letters



Changing water clarity can amplify or suppress climate-induced warming.
4

A. Surface

)

temperature difference (°C)
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Rose et al. 2016, L&O Letters



Changing water clarity can amplify or suppress climate-induced warming.
4

A. Surface B. Bottom

temperature difference (°C)
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Changing water clarity can amplify or suppress climate-induced warming.

o 3

3 A. Surface B. Bottom C. Whole-lake
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